

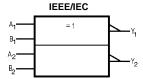
April 2000 Revised February 2002

NC7WZ86

TinyLogic™ UHS Dual 2-Input Exclusive-OR Gate

General Description

The NC7WZ86 is a dual 2-Input Exclusive-OR Gate from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.


Features

- Space saving US8 surface mount package
- Ultra High Speed; t_{PD} 2.9 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ± 24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at 3.3V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

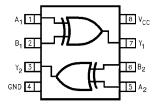
Ordering Code:

		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
NC7WZ86K8X	MAB08A	WZ86	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	2k Unite on Tano and Pool

Logic Symbol

Pin Descriptions

Pin Names	Description
A _n , B _n	Input
Yn	Output


Function Table

Y = A⊕B

Inp	Output	
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

(Top View)

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top
product code mark left to right, Pin One is the lower left pin (see diagram).

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

-0.5V to +7V Supply Voltage (V_{CC}) -0.5V to +7V DC Input Voltage (V_{IN}) DC Output Voltage (V_{OUT}) -0.5V to +7VDC Input Diode Current (I_{IK})

 $@V_{IN} < -0.5V$ -50 mA DC Output Diode Current (IOK)

 $@V_{OUT} < -0.5V$ -50 mA DC Output Current (I_{OUT}) \pm 50 mA DC V_{CC}/GND Current (I_{CC}/I_{GND}) $\pm\,100~\text{mA}$ Storage Temperature (T_{STG}) -65°C-+150°C

Junction Temperature under Bias (T_J) Junction Lead Temperature (T_L);

(Soldering, 10 seconds) 260°C 250 mW Power Dissipation (P_D) @ $+85^{\circ}$ C

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC}) 1.65V to 5.5V Supply Voltage Data Retention (V_{CC}) 1.5V to 5.5V Input Voltage (V_{IN}) 0V to 5.5V Output Voltage (V_{OUT}) 0V to V_{CC} -40°C-+85°C Operating Temperature (T_A)

Input Rise and Fall Time (t_r, t_f)

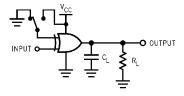
 V_{CC} = 1.8V \pm 0.15V, 2.5V $\pm 0.2 V$ 0 ns/V-20 ns/V $V_{CC} = 3.3V \pm 0.3V$ 0 ns/V-10 ns/V $V_{CC} = 5.0V \pm 0.5V$ 0 ns/V-5 ns/V Thermal Resistance (θ_{JA}) 250° C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused input must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

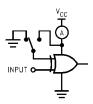
Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
Syllibol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions		
V _{IH}	HIGH Level Input Voltage	1.65-1.95	0.75 V _{CC}			0.75 V _{CC}		V			
		2.3-5.5	0.7 V _{CC}			0.7 V _{CC}		l v			
V _{IL}	LOW Level Input Voltage	1.65-1.95			0.25 V _{CC}		0.25 V _{CC}	V			
		2.3-5.5			$0.3\mathrm{V}_{\mathrm{CC}}$		$0.3\mathrm{V}_{\mathrm{CC}}$	V			
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55					
		2.3	2.2	2.3		2.2		v	V V V	I _{OH} = -100 μA	
		3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IH}, V_{IL}$	$I_{OH} = -100 \mu\text{A}$	
		4.5	4.4	4.5		4.4					
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$	
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$	
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$	
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$	
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$	
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1				
		2.3		0.0	0.1		0.1	V		$V_{IN} = V_{IH}$ or V_{IL}	I - 100 ·· A
		3.0		0.0	0.1		0.1		AIN = AIH OL AIL	ΙΟL = 100 μΑ	
		4.5		0.0	0.1		0.1				
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$	
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$	
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$	
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$	
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$	
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1	μΑ	V _{IN} = 5.5V, GNE		
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OUT} = 5.	.5V	
I _{CC}	Quiescent Supply Current	1.65-5.5			1		10	μΑ	V _{IN} = 5.5V, GNE)	
-											


150°C

AC Electrical Characteristics

Symbol	Parameter	v _{cc}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.
	r arameter	(V)	Min	Тур	Max	Min	Max	Oille	Conditions	l ig. No.
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	6.7	12.5	2.0	13.0			
t _{PHL}		2.5 ± 0.2	1.2	4.1	7.0	1.2	7.5	ns	$C_L = 15 pF$,	Figures
		3.3 ± 0.3	0.8	3.0	4.8	0.8	5.2	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	2.2	3.5	0.5	3.8			
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.2	3.8	5.4	1.2	5.9	ns	$C_L = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.9	4.2	1.0	4.6	115	$R_L = 500\Omega$	1, 3
C _{IN}	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation Capacitance	3.3		15				pF	(Note 3)	Figure 2
		5.0		19				ρı	(14016-3)	i igui e z

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static)$.


AC Loading and Waveforms

 $\mathbf{C}_{\mathbf{L}}$ includes load and stray capacitance

Input PRR = 1.0 MHz; $t_w = 500 \text{ ns}$

FIGURE 1. AC Test Circuit

Input = AC Waveform; $t_r = t_f = 1.8 \text{ ns};$

PRR = 10 MHz; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit

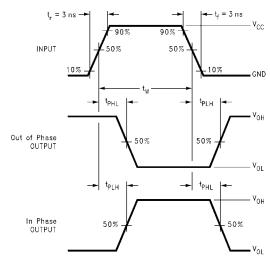
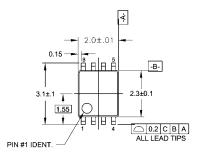
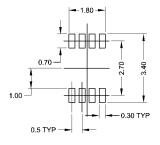
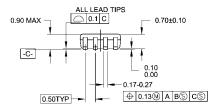
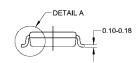
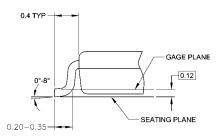




FIGURE 3. AC Waveforms


Tape and Reel Specification TAPE FORMAT Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status 125 (typ) Leader (Start End) Empty Sealed K8X Filled Carrier 3000 Sealed Trailer (Hub End) Sealed 75 (typ) Empty TAPE DIMENSIONS inches (millimeters) 2.00 4.00 - ø1.50 TYP 3.50±0.05 8.00 +0.30 -0.10 1.00±0.25 TYP **REEL DIMENSIONS** inches (millimeters) TAPE SLOT DETAIL X **DETAIL X** SCALE: 3X Tape Size W1 W2 W3 В С D N 7.0 0.059 0.512 0.795 0.331 + 0.059/-0.000 0.567 W1 + 0.078/-0.039 8 mm (177.8) (1.50) (13.00) (20.20) (55.00) (8.40 + 1.50/-0.00) (14.40) (W1 + 2.00/-1.00)


Physical Dimensions inches (millimeters) unless otherwise noted



LAND PATTERN RECOMMENDATION

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MAB08AREVC

8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com